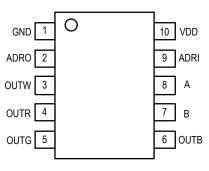
SM16512PS

特性说明

- ◆ OUTR/G/B/W 默认电流 17mA
- ◆ 软件设置上电默认显示状态(不亮灯、50%白光、 100%白光、50%蓝光)
- ◆ 数据总线写地址,控制器至第一灯点只需接 A/B 数据总线,无需接地址线
- ◆ 写地址成功后亮绿灯,可在线退出写地址状态, 灯具无需重新上电
- ◆ OUTR/G/B/W 输出端口耐压 26V
- ◆ 内置电源稳压电路,外部电源范围: 5V~24V
- ◆ 灰度等级: 256 级
- ◆ 兼容并扩展 DMX512(1990)协议信号
- ◆ 信号传输速率: 250kbps~750kbps
- ◆ 内置 EEPROM,最大支持 4096 通道寻址
- ◆ 信号传输方式:双线差分并联
- ◆ 内置 485 解码模块, 抗干扰能力强, 传输距离远
- ◆ 具有 3/4 通道选择功能
- ◆ 封装形式: SSOP10

应用领域


- ◆ 室内 LED 装饰照明
- ◆ 建筑 LED 外观/情景照明
- ◆ 洗墙灯、窗帘屏
- ◆ 点光源、护栏管

概述

SM16512PS是并联差分传输四通道LED驱动输出 控制专用芯片,兼容并扩展DMX512(1990)信号协议。

芯片內含电源稳压电路,时基电路,485模块,信号解码模块,数据缓存器,内置振荡器,四通道恒流驱动器默认输出电流17mA。每一输出通道皆可输出8位(256级)灰阶的可调线性电流。内置EEPROM存放芯片地址,数据总线一次性自动写地址,可在线退出写地址状态,无需重新上电。双线差分传输,带载点数多,抗干扰能力强,传输距离远。

管脚定义

SM16512PS(SSOP10)

管脚说明

引脚编号	符号	管脚名称	说明			
7	В	差分数据输入-	DMX512 差分数据输入-			
8	А	差分数据输入+	DMX512 差分数据输入+			
10	10 VDD 芯片电源		电源端,内置 5V 稳压电路			
9	9 ADRI 地址输入		写地址输入,内置上拉电阻			
2	2 ADRO 地址输出		写地址输出			
4~6,3	4~6,3 OUTR/G/B/W 驱动输出		LED 驱动开漏输出			
1	接地端					

订购信息

订购型号	封装形式	包装	卷盘尺寸	
77月至 7	1142/1714	管装	编带	
SM16512PS	SM16512PS SSOP10		4000 只/盘	13寸

业务电话: 400-033-6518

电气参数

极限参数(Ta = 25℃)

符号	参数	范围	单位
VDD	逻辑电源电压	-0.5——+5.5	V
V _{OUT}	OUTR/G/B/W 输出端口耐压	26	V
V _{I1}	逻辑输入电压	-0.5——VDD+0.5	V
l _{OL1}	LED 驱动输出电流	17	mA
T _{OPT}	工作温度	-40+125	$^{\circ}$
T _{STG}	储存温度	-65——+150	$^{\circ}$
Vesd	ESD	>2K	V

电气特性(Ta = 25℃)

7 413177 /						
符号	参数	测试条件	最小值	典型值	最大值	单位
VDD	电源电压	_	5	_	24	V
Іоит	OUTR/G/B/W 输出电流	VDD = 5.0V		17	1	mA
F _{PWM}	LED 扫描频率	VDD=5.0V, OUT 端口串接 120Ω 至 5V		3.3K	1	HZ
Vout	Vour 拐点电压	I _{OUT} =17mA		0.7	1	V
R _{IN}	差分输入阻抗	_	_	200	ı	ΚΩ
V _{CM}	差分输入共模电压	_	_	_	12	V
l _{АВ}	差分输入电流		_	_	28	uA
	差分输入临限电压		-200	_	200	mV
	差分输入迟滞电压	VDD=5V, B=2.5V		80	1	mV
Іон	ADRO 端口驱动	ADRO 最大输出电流	-50	_	-65	mA
loL	7.0 · iig · · · · · · · · · · · · · · · · ·	ADRO 最大灌电流	50	_	55	mA
l _{DD}	静态电流	VDD = 5.0V	_	3.6	_	mA
I _{leak}	OUTR/G/B/W 端口漏电流	VDD = 5.0V,VDS=30V	_	_	1	uA

恒流参数设定

芯片四个输出通道 OUTR/G/B/W 默认输出恒流 17mA 电流,输出电流 lour 与 OUTR/G/B/W 端口电压 Vos 的关系如下表所示:

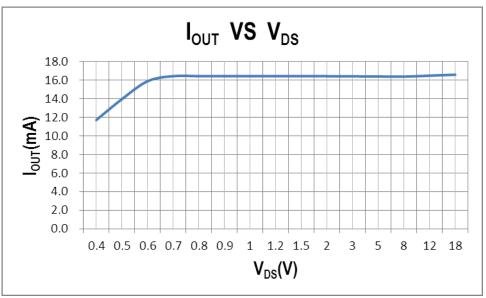


图 1 SM16512P 输出电流 lout 与 V_{DS} 的关系图

数据通信协议

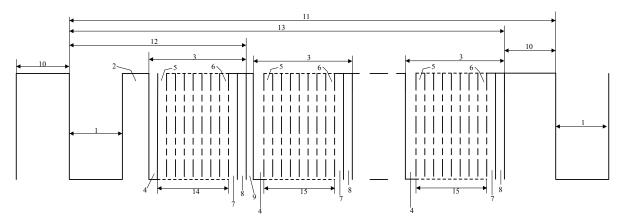


图 3 DMX512(1990)数据通信协议图

Figuer Key

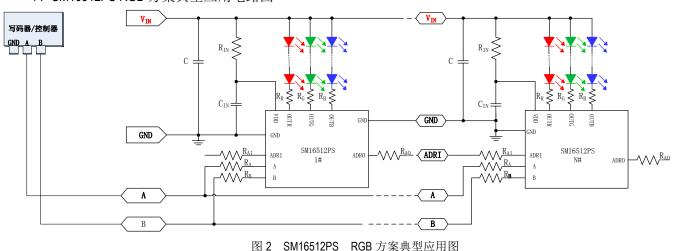
- 1- "SPACE" for BREAK
- 2- "MARK" After BREAK (MAB)
- 3- Slot Time
- 4- START Bit
- 5- LEAST SIGNIFICANT Data BIT
- 6- MOST SIGNIFICANT Data BIT
- 7- STOP Bit
- 8- STOP Bit
- 9- "MARK" Time Between slots
- 10- "MARK" Before BREAK (MBB)
- 11- BREAK to BREAK Time
- 12- RESET Sequence (BREAK, MAB, START Code)
- 13- DMX512 Packet
- 14- START CODE (Slot 0 Data)
- 15- SLOT 1 DATA
- 16- SLOT nnn DATA (Maximun 512)

Designation	Description	Min	Typical	Max	Unit
-	Bit Rate	245	250	255	kbit/s
-	Bit Time	3.92	4	4.08	us
-	Minimum Update Time for 513 slots	-	22.7	-	ms
-	Maximum Update Rate for 513 slots	-	44	-	/s
1	"SPACE" for BREAK	88	-	-	us
2	"MADK" After DDEAK (MAD)	8	-		us
2	"MARK" After BREAK (MAB)			<1.00	s
9	"MARK" Time Between slots	0	-	<1.00	S
10	"MARK" Before BREAK (MBB)	0	-	<1.00	s
4.4	DDEAK to DDEAK Time	1196	-		us
11	BREAK to BREAK Time			1.00	s
13	DMX512 Packet	1196	-		us
13	DIVIAD 12 PACKEL			1.00	s

注: ①以上数据格式完全兼容 DMX512 (1990)

②本产品最少需接收两帧数据,才刷新端口输出。当前接收数据对应端口输出,需在识别下一帧数据 MAB 后刷新;

业务电话: 400-033-6518


注: 如需最新资料或技术支持, 请与我们联系

典型应用

该产品用于差分并联传输方式,采用国际 DMX512(1990)协议,最大并联芯片数为 1024 颗。

在显示控制及写地址时,控制器到第一个灯点无需连接四根线,而只需连接 A/B 两根信号线就可完成写地址及显示控制,省掉了地线及地址线两根连接线,大大了提高了工程安装的灵活性及便捷性。

1、SM16512PS RGB 方案典型应用电路图

2、SM16512PS RGBW 方案典型应用电路图

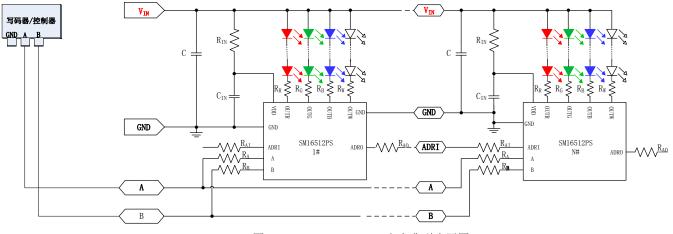


图 3 SM16512PS RGBW 方案典型应用图

SM16512PS 典型应用电路参数包含电源输入电压 V_{IN} ,限流电阻 R_{IN} ,芯片 VDD 稳压电容 C_{IN} 和 R/G/B/W LED 限流电阻 R_{R} 、 R_{G} 、 R_{B} 、 R_{W} ,地址信号输入保护电阻 R_{AI} 以及地址信号输出保护电阻 R_{AO} ,A/B 总线信号串接电阻 R_{A} 、 R_{B}

(1) V_{IN} 为输入电源电压, R_{IN} 为稳压限流电阻,用于限定芯片的稳压功能开启时,内部稳压电路的工作电流;芯片电源电压 V_{DD} : V_{DD} = V_{IN} - $(I_{DD}$ + $I_{IN})$ * R_{IN}

其中 I_{IN} 是芯片内部稳压电路的工作电流, I_{DD} 是芯片静态电流(稳压电路电流除外), R_{IN} 阻值必须保证 $V_{DD}>3V$ 。 R_{IN} 电阻越大,系统功耗越低,但系统抗干扰能力弱; R_{IN} 电阻越小,系统功耗越大,工作温度较高,设计时需根据系统应用环境合理选择电阻 R_{IN} 。不同的输入电源电压 V_{IN} ,限流电阻 R_{IN} 的设计参考值如下表:

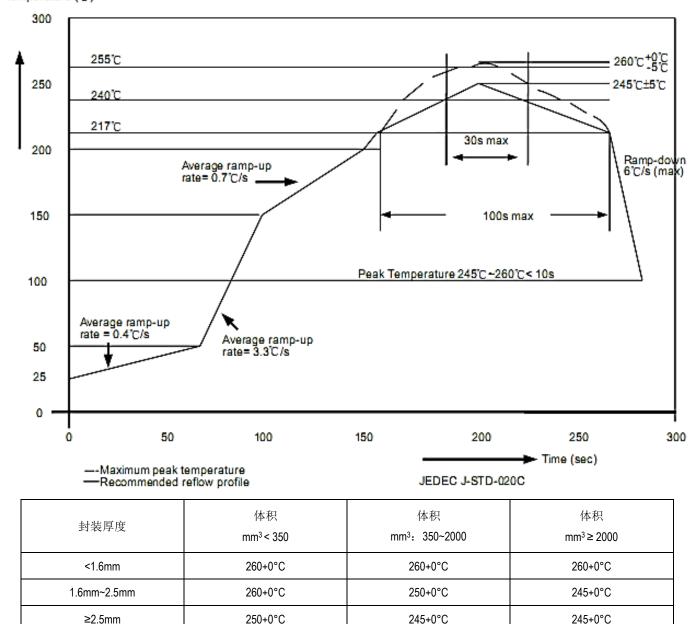
$V_{IN} (V)$	5V	6V	9V	12V	15V	18V	24V
$R_{IN} (\Omega)$	33	100	470	1K	1.5K	2K	3K

业务电话: 400-033-6518

- (2) C 为系统电源对地的电容,用于减小电源波动,可根据系统实际负载情况选择 0.1uF-10uF 电容;
- (3) C_N 为芯片滤波电容,用于稳定芯片的 VDD 电压,保证芯片正常工作,C_N 建议取值为 100nF 电容;
- (4) RA、RB为 A/B 信号输入端口保护电阻,防止芯片 A、B端口损坏,造成总线信号异常;
- (5) R_{AI} 为地址信号输入端口保护电阻,防止带电热拔插、电源正负极与信号线反接等情况造成信号输入端口损坏:
- (6) R_{AO} 为地址信号输出端口保护电阻,防止带电热拔插、电源正负极与信号线反接等情况造成信号输出端口损坏;
 - (7) R_R、R_G、R_B、R_W分别为 OUTR/G/B/W 端口的分压电阻,用于减小 OUTR/G/B/W 端口电压,降低芯片功耗,

其计算公式为 $R_R/R_G/R_B/R_W=\frac{V_{IN}-N^*V_{LED}-V_{DS}}{I_{LED}}$,其中 V_{IN} 是输入电压, V_{LED} 是 LED 灯的压降, I_{LED} 是端口输出电流,

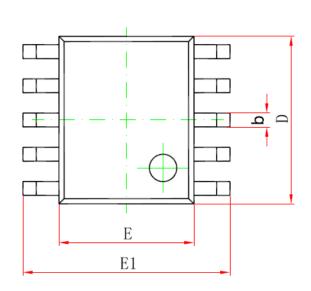
V_{DS} 是 OUTR/G/B/W 端口电压,达到 1V 时 OUTR/G/B/W 电流可恒定输出,考虑到实际应用中电压的衰减,设计时应酌情考虑 OUTR/G/B/W 端口的电压,以保证端口恒流输出,建议 OUTR/G/B/W 端口电压 V_{DS} 设计为 3.0V 左右,具体以实际应用为准;不同颜色灯珠压降 V_{LED} 参考值如下:红灯压降约为 2.0-2.2V,绿灯压降约为 3.0-3.2V,蓝灯压降约为 3.0-3.2V, 具体以灯珠实际规格为准。

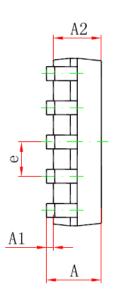

在典型的应用中,根据不同的输入电压,不同的灯珠数量,对应的各参数建议取值如下表:

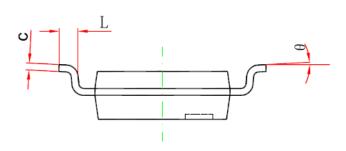
电源电压 V _{IN}	OUTR/G/B/W 端口 串接 LED 数 (颗)	R _{IN} (Ω)	C _{IN} (nF)	$R_A(\Omega)$	$R_B(\Omega)$	$R_{AI}(\Omega)$	R _{AO} (Ω)	R _R (Ω)	$R_G(\Omega)$	$R_B(\Omega)$	R _W (Ω)
12V	3	1K	100	10K	10K	510	510	150	不加	不加	不加
24V	6	3K	100	10K	10K	510	510	510	150	150	150

封装焊接制程

明微电子所生产的半导体产品遵循欧洲 RoHs 标准,封装焊接制程锡炉温度符合 J-STD-020 标准。


Temperature (°C)




业务电话: 400-033-6518

封装形式

SSOP10

Cumbal	Millim	enters	Inchs			
Symbol	Min	Max	Min	Max		
Α	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.300	0.450	0.012	0.018		
С	0.170	0.250	0.007	0.010		
D	4.700	5.100	0.185	0.201		
Е	3.800	4.000	0.150	0.157		
E1	5.800	6.200	0.228	0.244		
е	1.000	(BSC)	0.039	(BSC)		
L	0.400	1.270	0.016	0.050		
θ	00	80	10	80		

业务电话: 400-033-6518

注: 如需最新资料或技术支持, 请与我们联系

使用权声明

明微电子对于产品、文件以及服务保有一切变更、修正、修改、改善和终止的权利。针对上述的权利,客户在进行产品购买前,建议与明微电子业务代表联系以取得最新的产品信息,所有技术应用需要严格按照最新产品说明书进行设计。

明微电子的产品,除非经过明微合法授权,否则不应使用于医疗或军事行为上,若使用者因此导致任何身体伤害或生命威胁甚至死亡,明微电子将不负任何损害赔偿责任。

此份文件上所有的文字内容、图片及商标为明微电子所属之智慧财产。未经明微合法授权,任何个人和组织不得擅自使用、修改、重制、公开、改作、散布、发行、公开发表等损害本企业合法权益。对于相关侵权行为,本企业将立即全面启动法律程序,追究法律责任。