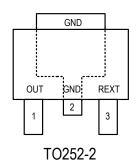


SM2251NH

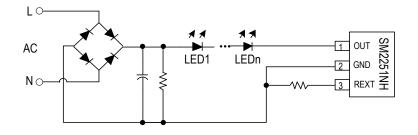
特点

- ◆ 本司专利的恒流控制技术
- ◆ 支持输入电压: 120Vac/220Vac
- ◆ 支持高 PF 方案: PF>0.9
- ◆ 支持低 PF 方案: PF>0.5, 无频闪
- ◆ 芯片间输出电流偏差<±5%
- ◆ 内部集成 700V 高压 MOS 管, 无需任何保护器件可通过 700V 雷击
- ◆ 无需磁性元器件可满足 EMI 应用
- ◆ 具有恒功率调节功能,无需外围恒功率电阻
- ◆ 具有过温调节功能
- ◆ 封装形式: TO252-2

应用领域

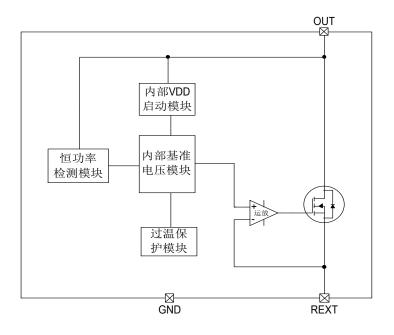

- ◆ LED 日光灯管 T5/T8
- ◆ LED 球泡灯
- ◆ 投光灯
- ◆ 工矿灯
- ◆ 灯具类 LED 照明

概述


SM2251NH 是一款单段恒功率 LED 线性恒流控制芯片,芯片集成了 700V 高压 MOSFET,采用独特创新的器件工艺技术,具有优越的抗雪崩击穿及浪涌能力,在外围无保护器件时可通过 700V 雷击浪涌测试,内置过温保护功能,提升系统应用可靠性。外围可通过调节 REXT 电阻值对输出电流进行调节。同时 SM2251NH 集成了输入线电压补偿功能,在输入线电压过高时,将按照内置的补偿电阻减小输出电流,保证输入功率基本不随线电压变化。

其主要应用于 LED 照明、建筑亮化工程等领域,系统结构简单,外围元件少,PCB 走线简洁,方案成本低。

管脚图


典型应用

备注: 上图电源可以是交流电源,也可为直流电源。

业务电话: 400-033-6518

内部功能框图

管脚说明

管脚序号	管脚名称	管脚说明	
1	OUT	电源输入与恒流输出端口	
2	GND	芯片地	
3	REXT	输出电流值设置端口	

订购信息

订购型号	封装形式	包装方式		卷盘尺寸	
7 购至 5	到农心八	管装	编带	位	
SM2251NH	TO252-2	40000 只/箱	2500 只/盘	13寸	

极限参数(注1)

若无特殊说明, TA=25°C。

符号	说明	范围	单位
Vouт	OUT 端口电压	-0.5~700	V
V _{REXT}	REXT 端口电压	-0.5~8	V
RθJA	PN 结到环境的热阻 (注 2)	55	°C/W
P _D	功耗 (注 3)	1.8	W
TJ	工作结温范围	-40~150	°C
Тѕтс	存储温度	-55~150	°C
V _{ESD}	HBM 人体放电模式	2	KV

- 注 1: 最大输出功率受限于芯片结温,最大极限值是指超出该工作范围,芯片有可能损坏。在极限参数范围内工作,器件功能正常,但并不完全保证满足个别性能指标。
- 注 2: ROJA 在 TA=25°C 自然对流下根据 JEDEC JESD51 热测量标准在单层导热试验板上测量。
- 注 3: 温度升高最大功耗一定会减小,这也是由 T_{JMAX} , $R\theta JA$ 和环境温度 T_A 所决定的。最大允许功耗为 P_D = $(T_{JMAX}-T_A)/R\theta JA$ 或是极限范围给出的数值中比较低的那个值。

电气工作参数 (注 4、5)

若无特殊说明, TA=25°C。

符号	说明	条件	最小值	典型值	最大值	单位
V _{OUT_BV}	OUT 端口耐压	-	700	-	-	V
lod	静态电流	V _{OUT} =20V	100	150	200	uA
V _{REXT}	REXT 端口电压	$V_{OUT}=15V$, REXT=30 Ω	589	620	651	mV
D _{IOUT}	IOUT 片间偏差	I _{ОUТ} =30mA	-	±5	-	%
V _{OUT_VT}	OUT 端口恒功率起始电压	-	-	62	-	V
Tsc	电流负温度补偿起始点(注6)	-	-	145	-	°C

- 注 4: 电气工作参数定义了器件在工作范围内并且在保证特定性能指标的测试条件下的直流和交流电参数。对于未给定上下限值的参数,该规范不予保证其精度,但其典型值合理反映了器件性能。
- 注 5: 规格书的最小、最大参数范围由测试保证,典型值由设计、测试或统计分析保证。
- 注 6: 电流负温度补偿起始点为芯片内部设定温度 145°C。

注: 如需最新资料或技术支持, 请与我们联系

功能表述

SM2251NH 是一款单段恒功率 LED 线性恒流控制芯片,芯片集成了 700V 高压 MOSFET,在外围无保护器件时可通过 700V 雷击浪涌测试,内置过温保护功能,提升系统应用可靠性。外围可通过调节 REXT 电阻值对输出电流进行调节。同时 SM2251NH 集成了输入线电压补偿功能,在输入线电压过高时,将按照内置的补偿电阻减小输出电流,保证输入功率基本不随线电压变化。

◆ 输出电流

SM2251NH 的 OUT 端口输出电流计算公式:
$$I_{OUT} = \frac{V_{REXT}}{Rext} = \frac{0.62 \text{ V}}{Rext} (A)$$
 。

◆ 输入线电压补偿功能

系统正常工作时, OUT 端口的 LED 导通,芯片检测 OUT 端口的电压,当 OUT 端口电压>62V,通过内置的补偿电阻减小输出电流,保证输入功率基本不随线电压变化。

◆ 效率设计

系统工作效率为:

$$\eta = \frac{P_{LED}}{P_{IN}} = \frac{n * V_{LED} * I_{LED}}{V_{IN} * I_{LED}} = \frac{n * V_{LED}}{V_{IN}}$$

其中, V_{IN} 是系统输入电源电压, V_{LED} 是单个 LED 工作电压降, I_{LED} 是 LED 电流。可看出系统串联的 LED 数量 n 越大,系统工作效率越高。系统设计过程中,需根据应用环境调整 SM2251NH 的 OUT 端口工作电压,优化 η 值。

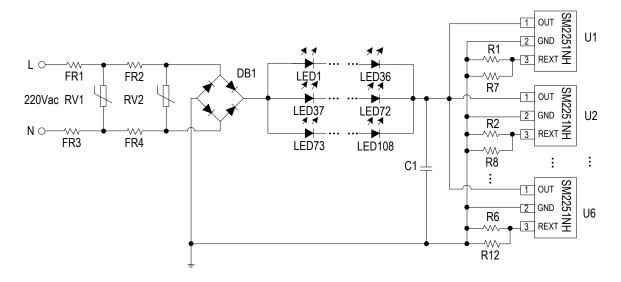
◆ 芯片散热措施

SM2251NH 芯片内部具有温度补偿电路,为避免芯片温度高引起掉电流现象,系统需采用良好的散热处理,确保 SM2251NH 芯片工作在合理的温度范围,常见散热措施如下:

- 1) 系统采用铝基板;
- 2) 增大 SM2251NH 衬底的覆铜面积;
- 3) 增大整个灯具的散热底座:

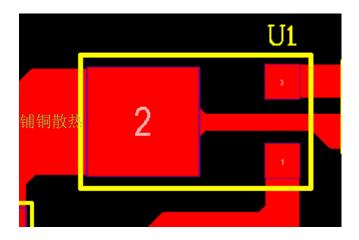
SM2251NH 支持芯片并联应用方案。若系统输出功率过大导致芯片温度高时,可以采用多颗 SM2251NH 芯片并联使用。

◆ 过温调节功能


当 LED 灯具内部温度过高,会引起 LED 灯出现严重的光衰,降低 LED 使用寿命。SM2251NH 集成了温度补偿功能,当芯片内部达到 145℃ 过温点时,芯片将会自动减小输出电流,以降低灯具内部温度,提高系统可靠性。

典型应用方案

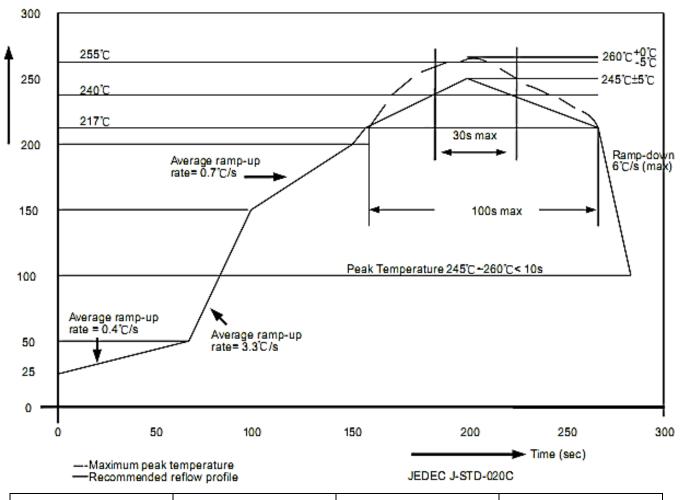
◆ 方案一


PF>0.9 多颗 IC 高 PF 应用方案 (100W)

位号	参数	位号	参数
FR1-FR4	6.8R/2W 绕线电阻	R7-R12	5.6R/0805
RV1、RV2	10D471	C1	10nF/1KV
DB1	DB107S	LED1-LED108	6V/150mA/2835
R1-R6	24R/0805	U1-U6	SM2251NH

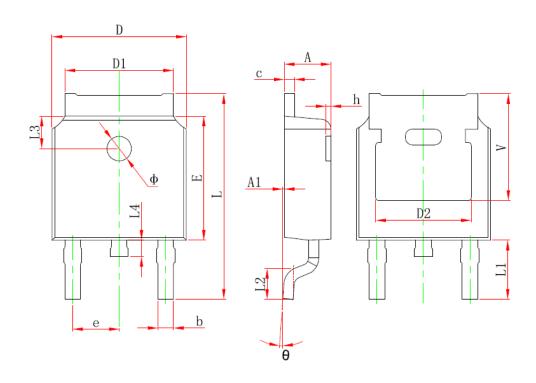
- 1. LED 灯串电压建议控制在 230V 到 250V 之间, 系统工作最优化;
- 2. 通过改变 R1-R12 电阻值,调整输出工作电流值;
- 3. 为提高系统可靠性,FR1、FR2、RV1、RV2、C1建议保留。

PCB layout 注意事项


- (1) 系统实际输出功率与 PCB 板及灯壳本身散热情况有关,实际应用功率需匹配散热条件。
- (2) IC 衬底部分进行铺铜处理,进行散热,增加可靠性,铺铜如上图所示。

封装焊接制程

明微电子所生产的半导体产品遵循欧洲 RoHs 标准,封装焊接制程锡炉温度符合 J-STD-020 标准。


Temperature (°C)

封装厚度	体积 mm³<350	体积 mm³: 350~2000	体积 mm³≥ 2000
<1.6mm	260+0°C	260+0°C	260+0°C
1.6mm~2.5mm	260+0°C	250+0°C	245+0°C
≥2.5mm	250+0°C	245+0°C	245+0°C

封装形式

TO252-2

Symbol	Min(mm)	Max(mm)
A	2.0	2.7
A1	-	0.2
b	0.5	1.1
С	0.3	0.8
D	6.3	6.9
D1	4.9	5.7
D2	4.8	33(REF)
E	5.9	6.4
е	2.086	2.486
L	9.5	10.7
L1	2.9(REF)	
L2	1.2	1.9
L3	1.6(REF)	
L4	0.4	1.2
ф	0.9	1.5
θ	0°	10°
h	-	0.5
V	5.35(REF)	

业务电话: 400-033-6518