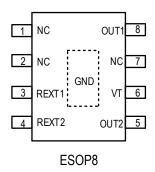
SM2188EH

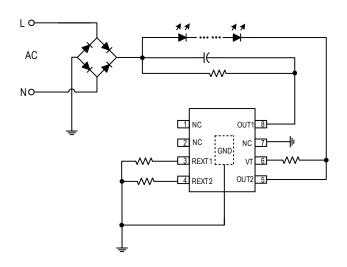
特点

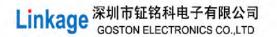
- ◆ 本司专利的恒流控制技术
- ◆ 支持输入电压: 120Vac/220Vac
- ◆ 无频闪、可满足新 ERP 标准要求
- ◆ 芯片间输出电流偏差<±5%
- ◆ 无需磁性元器件可满足 EMI 应用
- ◆ 具有过温调节功能
- ◆ 封装形式: ESOP8

应用领域


- ◆ LED 日光灯管 T5/T8
- ◆ LED 球泡灯
- ◆ 投光灯
- ◆ 工矿灯
- ◆ 灯具类 LED 照明

概述


SM2188EH 是一款无频闪、可满足新 ERP 标准的 LED 线性恒流控制芯片,内置过温保护功能,提升系统应用可靠性。外围可通过调节 REXT 电阻值对输出电流进行调节。同时 SM2188EH 集成了输入线电压补偿功能,在输入线高电压过时,按照外置的补偿电阻减小电解充电电流,以满足新 ERP 标准。


其主要应用于 LED 照明、建筑亮化工程等领域,系统结构简单,外围元件少,PCB 走线简洁,方案成本低。

管脚图

典型应用

管脚说明

管脚序号	管脚名称	管脚说明	
1、2	NC	悬空端口	
3	REXT1	输出电流值设置端口1	
4	REXT2	输出电流值设置端口2	
5	OUT2	电源输入与恒流输出端口 2	
6	VT	恒功率设置端口	
7	NC	应用时需接芯片地	
8	OUT1	电源输入与恒流输出端口1	
衬底	GND	芯片地	

订购信息

订购型号	封装形式	包装方式		卷盘尺寸	
7 网至 5		管装	编带	仓益八寸	
SM2188EH	ESOP8	100000 只/箱	4000 只/盘	13寸	

极限参数 (注1)

若无特殊说明, TA=25°C。

符号	说明	范围	单位
V _{OUT1}	OUT1 端口电压	-0.5~500	V
V _{ОUТ2}	OUT2 端口电压	-0.5~500	V
V _{REXT}	REXT 端口电压	-0.5~8	V
V _T	VT 端口电压	-0.5~8	V
RθJA	PN 结到环境的热阻(注 2)	65	°C/W
P _D	功耗 (注3)	1.25	W
TJ	工作结温范围	-40~150	°C
Тѕтс	存储温度	-55~150	°C
V _{ESD}	HBM 人体放电模式	2	KV

- 注 1:最大输出功率受限于芯片结温,最大极限值是指超出该工作范围,芯片有可能损坏。在极限参数范围内工作,器件功能正常,但并不完全保证满足个别性能指标。
- 注 2: RθJA 在 T_A=25°C 自然对流下根据 JEDEC JESD51 热测量标准在单层导热试验板上测量。
- 注 3. 温度升高最大功耗一定会减小,这也是由 T_{JMAX} , $R\theta JA$ 和环境温度 T_A 所决定的。最大允许功耗为 P_D = $(T_{JMAX}-T_A)/$ $R\theta JA$ 或是极限范围给出的数值中比较低的那个值。

电气工作参数(注4、5)

若无特殊说明, T_A=25°C。

符号	说明	条件	最小值	典型值	最大值	单位
V _{OUT1_BV}	OUT1 端口耐压	-	500	-	-	V
V _{OUT2_BV}	OUT2 端口耐压	-	500	-	-	V
lod	静态电流	V _{OUT1} =20V, V _{REXT1} =2V	150	220	300	uA
V _{REXT1}	REXT1 端口电压	$V_{OUT1=}15V$, REXT1= 30Ω	1.15	1.20	1.25	V
V _{REXT2}	REXT2 端口电压	$V_{OUT2}=15V$, REXT2=30 Ω	580	600	620	mV
Tsc	电流负温度补偿起始点(注6)	-	-	150	-	°C

- 注 4: 电气工作参数定义了器件在工作范围内并且在保证特定性能指标的测试条件下的直流和交流电参数。对于未给定上下限值的参数,该规范不予保证其精度,但其典型值合理反映了器件性能。
- 注 5: 规格书的最小、最大参数范围由测试保证,典型值由设计、测试或统计分析保证。
- 注 6: 电流负温度补偿起始点为芯片内部设定温度 150°C。

功能表述

SM2188EH 是一款可满足高 PF 无频闪的 LED 线性恒流控制芯片,内置过温保护功能,提升系统应用可靠性。外围可通过调节 REXT 电阻值对输出电流进行调节。同时 SM2188EH 集成了输入线电压补偿功能,在输入线电压过高时,SM2188EH 将按照外置的补偿电阻减小电解充电电流,以满足新 ERP 标准。

◆ 输出电流

SM2188EH 的 OUT1 端口输出电流计算公式: $I_{\text{OUT1}} = \frac{V_{\text{REXT1}}}{\text{Rext}(\Omega)} = \frac{1.2\text{V}}{\text{Rext}(\Omega)}(A)$ 。

SM2188EH 的 OUT2 端口输出电流计算公式: $I_{\text{OUT2}} = \frac{V_{\text{REXT2}}}{\text{Rext}(\Omega)} = \frac{0.6\text{V}}{\text{Rext}(\Omega)}(A)$ 。

◆ 输入线电压补偿功能

系统正常工作时,当 OUT2 端口导通时,OUT2 端口上的电压开始升高,通过 R_{VT} 连接到 VT 的端口电压也会升高,芯片通过检测 VT 端的电压高低来调制输出电流。输出电流的调制幅度通过外置 VT 到 OUT2 的 R_{VT} 电阻设置。 关系式如下所述:

$$V_{REXT1}$$
=1.2-12000* $\frac{V_{OUT2}$ -0.7}{R_{VT}}

Rvr:线电压补偿电阻。

◆ 效率设计

系统工作效率为:

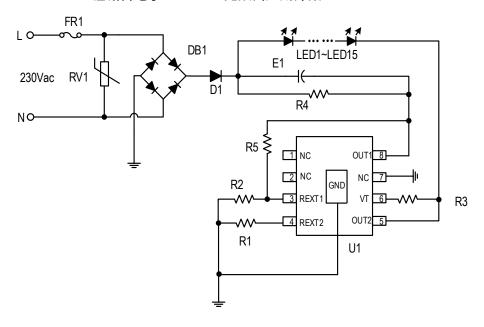
$$\eta \ = \ \frac{P_{\text{LED}}}{P_{\text{N}}} \ = \ \frac{n \ * \ V_{\text{LED}} \ * \ I_{\text{LED}}}{V_{\text{N}} \ * \ I_{\text{1-FD}}} \ = \ \frac{n \ * \ V_{\text{LED}}}{V_{\text{N}}}$$

其中, V_{IN} 是系统输入电源电压, V_{LED} 是单个 LED 工作电压降, I_{LED} 是 LED 电流。可看出系统串联的 LED 数量 n 越大,系统工作效率越高。系统设计过程中,需根据应用环境调整 SM2188EH 的 OUT2 端口工作电压,优化 η 值。

◆ 芯片散热措施

SM2188EH 芯片内部具有温度补偿电路,为避免芯片温度高引起掉电流现象,系统需采用良好的散热处理,确保 SM2188EH 芯片工作在合理的温度范围,常见散热措施如下:

- 1) 系统采用铝基板;
- 2) 增大 SM2188EH 衬底的覆铜面积;
- 3) 增大整个灯具的散热底座;


SM2188EH 支持芯片并联应用方案。若系统输出功率过大导致芯片温度高时,可以采用多颗 SM2188EH 芯片并联使用。

◆ 过温调节功能

当 LED 灯具内部温度过高,会引起 LED 灯出现严重的光衰,降低 LED 使用寿命。SM2188EH 集成了温度补偿功能,当芯片内部达到 150℃ 过温点时,芯片将会自动减小输出电流,以降低灯具内部温度,提高系统可靠性。

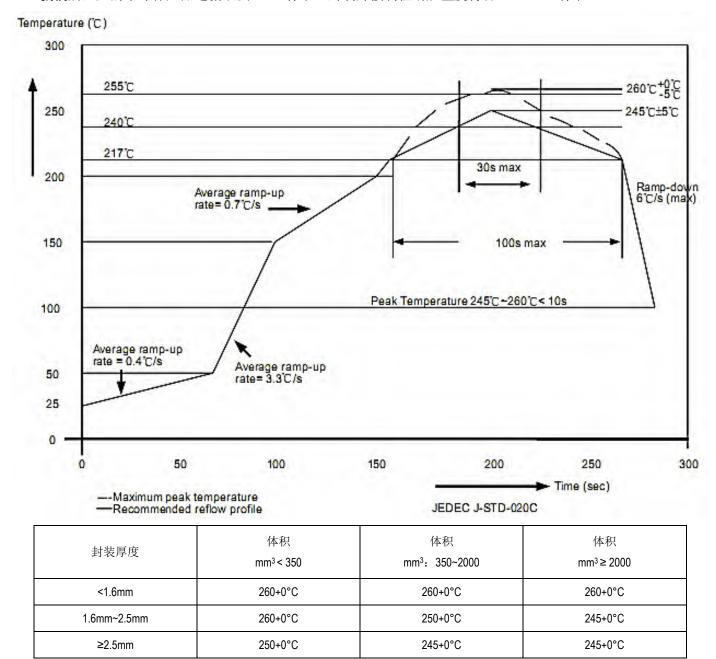
典型应用方案

证铭科电子SM2188EH 无频闪应用方案(9W/230Vac)

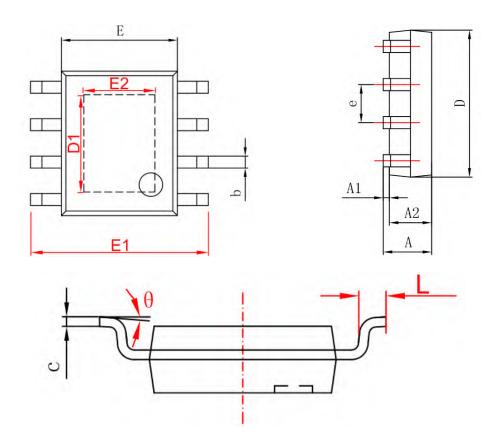
BOM 单

<u>+</u>			
位号	参数	位号	参数
FR1	10R/0.5W 绕线电阻	R3	1M/0805
RV1	0806 SV431-101A	R4	1M/1206
DB1	MB6S	R5	10K/1206
D1	E1J	E1	6.8uF/400V
R1	22R/0805	U1	SM2188EH
R2	7.5R/0805	LED1~LED15	18V/60mA

- 1. 通过改变 R1 电阻值,调整输出工作电流值;
- 2. 通过改变 R2 电阻值,调整电解充电电流; R3 为系统 VT 脚检测电阻,建议取值 1M;
- 3. 2 3 0 V A C 输入时 灯串电压建议 250~260V;
- 4. 为提高系统可靠性,RV1建议保留。技术咨询:4000336518 样板及选型参考!


PCB layout 注意事项

- (1) IC 衬底与 PCB 需要采用锡膏工艺,保证 IC 衬底与 PCB 接触良好,IC 衬底禁止使用红胶工艺。
- (2) 系统实际输出功率与 PCB 板及灯壳本身散热情况有关,实际应用功率需匹配散热条件。
- (3) IC 衬底进行铺铜处理,进行散热,增加可靠性,铺铜如上图所示,建议衬底焊盘大小为 2.5mm*1.8mm。
- (4) IC 衬底焊盘漏铜距离 OUT 端口需保证>0.8mm 以上的间距。


封装焊接制程

我们所生产的半导体产品遵循欧洲 RoHs 标准,封装焊接制程锡炉温度符合 J-STD-020 标准。

封装形式

ESOP8

Symbol	Min(mm)	Max(mm)	
A	1.25	1.95	
A1	-	0.1	
A2	1.25	1.75	
b	0.25	0.7	
С	0.1	0.35	
D	4.6	5.3	
D1	3.12(REF)		
E	3.7	4.2	
E1	5.7	6.4	
E2	2.34(REF)		
е	1.270(BSC)		
L	0.2	1.5	
Θ	0°	10°	

使用权声明

我们对于产品、文件以及服务保有一切变更、修正、修改、改善和终止的权利。针对上述的权利,客户在进行产品购买前,建议与**证铭科电子的**业务代表联系以取得最新的产品信息,所有技术应用需要严格按照最新产品说明书进行设计。

我们的产品,除非经过合法授权,否则不应使用于医疗或军事行为上,若使用者因此导致任何身体伤害或生命威胁甚至死亡,**我们**将不负任何损害赔偿责任。

此份文件上所有的文字内容、图片及商标为**我们**所属之智慧财产。未经合法授权,任何个人和组织不得擅自使用、修改、重制、公开、改作、散布、发行、公开发表等损害本企业合法权益。对于相关侵权行为,本企业将立即全面启动法律程序,追究法律责任。